236 Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [1,2], p = 1, q = 2
Output: 1
前序遍历,如果遇到目标节点,返回 true ,最小公共祖先的左右两个字节点的遍历都会返回 true 。边界条件其中一个节点是公共祖先,需要考虑到。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
TreeNode ret;
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root==null || p==null || q==null) return null;
ret=null;
find(root, p, q);
return ret;
}
private boolean find(TreeNode root, TreeNode p, TreeNode q){
if(root==null) return false;
if(root==p || root==q) {
if(ret==null && (find(root.left, p, q) || find(root.right, p, q))) ret=root;
return true;
}
boolean left=false, right=false;
left=find(root.left, p, q);
right=find(root.right, p, q);
if(left && right) ret=root;
return (left || right);
}
}